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Abstract

Contrastive learning (CL) can learn generalizable feature representations and
achieve state-of-the-art performance of downstream tasks by finetuning a linear

classifier on top of it. However, as adversarial robustness becomes vital in image
classification, it remains unclear whether or not CL is able to preserve robustness
to downstream tasks. The main challenge is that in the ‘self-supervised pretraining
+ supervised finetuning’ paradigm, adversarial robustness is easily forgotten due to
a learning task mismatch from pretraining to finetuning. We call such challenge
‘cross-task robustness transferability’. To address the above problem, in this paper
we revisit and advance CL principles through the lens of robustness enhancement.
We show that (1) the design of contrastive views matters: High-frequency com-
ponents of images are beneficial to improving model robustness; (2) Augmenting
CL with pseudo-supervision stimulus (e.g., resorting to feature clustering) helps
preserve robustness without forgetting. Equipped with our new designs, we pro-
pose ADVCL, a novel adversarial contrastive pretraining framework. We show that
ADVCL is able to enhance cross-task robustness transferability without loss of
model accuracy and finetuning efficiency. With a thorough experimental study, we
demonstrate that ADVCL outperforms the state-of-the-art self-supervised robust
learning methods across multiple datasets (CIFAR-10, CIFAR-100 and STL-10)
and finetuning schemes (linear evaluation and full model finetuning). Code is
available at https://github.com/LijieFan/AdvCL.

1 Introduction

Image classification has been revolutionized by convolutional neural networks (CNNs). In spite of
CNNs’ generalization power, the lack of adversarial robustness has shown to be a main weakness
that gives rise to security concerns in high-stakes applications when CNNs are applied, e.g., face
recognition, medical image classification, surveillance, and autonomous driving [1–4]. The brittleness
of CNNs can be easily manifested by generating tiny input perturbations to completely alter the
models’ decision. Such input perturbations and corresponding perturbed inputs are referred to as
adversarial perturbations and adversarial examples (or attacks), respectively [5–9].

One of the most powerful defensive schemes against adversarial attacks is adversarial training (AT)
[10], built upon a two-player game in which an ‘attacker’ crafts input perturbations to maximize the
training objective for worst-case robustness, and a ‘defender’ minimizes the maximum loss for an
improved robust model against these attacks. However, AT and its many variants using min-max
optimization [11–20] were restricted to supervised learning as true labels of training data are required

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://github.com/LijieFan/AdvCL


for both supervised classifier and attack generator (that ensures misclassification). The recent work
[21–23] demonstrated that with a properly-designed attacker’s objective, AT-type defenses can be
generalized to the semi-supervised setting, and showed that the incorporation of additional unlabeled
data could further improve adversarial robustness in image classification. Such an extension from
supervised to semi-supervised defenses further inspires us to ask whether there exist unsupervised

defenses that can eliminate the prerequisite of labeled data but improve model robustness.

Some very recent literature [24–28] started tackling the problem of adversarial defense through the
lens of self-supervised learning. Examples include augmenting a supervised task with an unsupervised
‘pretext’ task for which ground-truth label is available for ‘free’ [24, 25], or robustifying unsupervised
representation learning based only on a pretext task and then finetuning the learned representations
over downstream supervised tasks [26–28]. The latter scenario is of primary interest to us as a defense
can then be performed at the pretraining stage without needing any label information. Meanwhile, self-
supervised contrastive learning (CL) has been outstandingly successful in the field of representation
learning: It can surpass a supervised learning counterpart on downstream image classification tasks
in standard accuracy [29–33]. Different from conventional self-supervised learning methods [34],
CL, e.g., SimCLR [29], enforces instance discrimination by exploring multiple views of the same
data and treating every instance under a specific view as a class of its own [35].
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Figure 1: Summary of performance for various robust
pretraining methods on CIFAR-10. The covered baseline
methods include AP-DPE [25], RoCL [27], ACL [26] and
supervised adversarial training (AT) [10]. Upper-right indi-
cates better performance with respect to (w.r.t.) standard
accuracy and robust accuracy (under PGD attack with 20
steps and 8/255 `1-norm perturbation strength). Different
colors represent different pretraining methods, and differ-
ent shapes represent different finetuning settings. Circles
(l) indicates Standard Linear Finetuning (SLF), and Di-
amonds (u) indicates Adversarial Full Finetuning (AFF).
Our method (ADVCL, red circle/diamond) has the best per-
formance across finetuning settings. Similar improvement
could be observed under Auto-Attacks, and we provide the
visualization in the appendix.

The most relevant work to ours is [26, 27],
which integrated adversarial training with CL.
However, the achieved adversarial robustness
at downstream tasks largely relies on the use
of advanced finetuning techniques, either ad-
versarial full finetuning [26] or adversarial lin-
ear finetuning [27]. Different from [26, 27],
we ask:

(Q) How to accomplish robustness enhance-

ment using CL without losing its finetuning ef-

ficiency, e.g., via a standard linear finetuner?

Our work attempts to make a rigorous and
comprehensive study on addressing the above
question. We find that self-supervised learn-
ing (including the state-of-the-art CL) suffers
a new robustness challenge that we call ‘cross-
task robustness transferability’, which was
largely overlooked in the previous work. That
is, there exists a task mismatch from pretrain-
ing to finetuning (e.g., from CL to supervised
classification) so that adversarial robustness
is not able to transfer across tasks even if
pretraining datasets and finetuning datasets
are drawn from the same distribution. Dif-
ferent from supervised/semi-supervised learn-
ing, this is a characteristic behavior of self-
supervision when being adapted to robust
learning. As shown in Figure 1, our work advances CL in the adversarial context and the pro-
posed method outperforms all state-of-the-art baseline methods, leading to a substantial improvement
in both robust accuracy and standard accuracy using either the lightweight standard linear finetuning
or end-to-end adversarial full finetuning.

Contributions Our main contributions are summarized below.

∂ We propose ADVCL, a unified adversarial CL framework, and propose to use original adversarial
examples and high-frequency data components to create robustness-aware and generalization-aware
views of unlabeled data.

∑ We propose to generate proper pseudo-supervision stimulus for ADVCL to improve cross-task
robustness transferability. Different from existing self-supervised defenses aided with labeled data
[26], we generate pseudo-labels of unlabeled data based on their clustering information.
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∏ We conduct a thorough experimental study and show that ADVCL achieves state-of-the-art robust
accuracies under both PGD attacks [10] and Auto-Attacks [36] using only standard linear finetuning.
For example, in the case of Auto-Attack (the most powerful threat model) with 8/255 `1-norm
perturbation strength under ResNet-18, we achieve 3.44% and 3.45% robustness improvement on
CIFAR-10 and CIFAR-100 over existing self-supervised methods. We also justify the effectiveness
of ADVCL in different attack setups, dataset transferring, model explanation, and loss landscape
smoothness.

2 Background & Related Work

Self-Supervised Learning Early approaches for unsupervised representation learning leverages
handcrafted tasks, like prediction rotation [37] and solving the Jigsaw puzzle [38, 39] and Selfie
[40]. Recently contrastive learning (CL) [29, 32, 33, 41–43] and its variants [30, 31, 35, 44] have
demonstrated superior abilities in learning generalizable features in an unsupervised manner. The
main idea behind CL is to self-create positive samples of the same image from aggressive viewpoints,
and then acquire data representations by maximizing agreement between positives while contrasts
with negatives.

In what follows, we elaborate on the formulation of SimCLR [29], one of the most commonly-used
CL frameworks, which this paper will focus on. To be concrete, let X = {x1, x2, ..., xn} denote
an unlabeled source dataset, SimCLR offers a learned feature encoder f✓ to generate expressive
deep representations of the data. To train f✓, each input x 2 X will be transformed into two views

(⌧1(x), ⌧2(x)) and labels them as a positive pair. Here transformation operations ⌧1 and ⌧2 are
randomly sampled from a pre-defined transformation set T , which includes, e.g., random cropping
and resizing, color jittering, rotation, and cutout. The positive pair is then fed in the feature encoder
f✓ with a projection head g to acquire projected features, i.e., zi = g � f✓(⌧i(x)) for j 2 {1, 2}.
NT-Xent loss (i.e., the normalized temperature-scaled cross-entropy loss) is then applied to optimizing
f✓, where the distance of projected positive features (z1, z2) is minimized for each input x. SimCLR
follows the ‘self-supervised pretraining + supervised finetuning’ paradigm. That is, once f✓ is trained,
a downstream supervised classification task can be handled by just finetuning a linear classifier �
over the fixed encoder f✓, leading to the eventual classification network � � f✓.

Adversarial Training (AT) Deep neural networks are vulnerable to adversarial attacks. Various
approaches have been proposed to enhance the model robustness. Given a classification model ✓, AT
[10] is one of the most powerful robust training methods against adversarial attacks. Different from
standard training over normal data (x, y) 2 D (with feature x and label y in dataset D), AT adopts
a min-max training recipe, where the worst-case training loss is minimized over the adversarially
perturbed data (x + �, y). Here � denotes the input perturbation variable to be maximized for the
worst-case training objective. The supervised AT is then formally given by

min
✓

E(x,y)2D max
k�k1✏

`(x+ �, y; ✓), (1)

where ` denotes the supervised training objective, e.g., cross-entropy (CE) loss. There have been
many variants of AT [18–20, 45, 46, 21–24] established for supervised/semi-supervised learning.

Self-supervision enabled AT Several recent works [25–28] started to study how to improve model
robustness using self-supervised AT. Their idea is to apply AT (1) to a self-supervised pretraining task,
e.g., SimCLR in [26, 27], such that the learned feature encoder f✓ renders robust data representations.
However, different from our work, the existing ones lack a systematic study on when and how

self-supervised robust pretraining can preserve robustness to downstream tasks without sacrificing
the efficiency of lightweight finetuning. For example, the prior work [25, 26] suggested adversarial
full finetuning, where pretrained model is used as a weight initialization in finetuning downstream
tasks. Yet, it requests the finetuner to update all of the weights of the pretrained model, and thus
makes the advantage of self-supervised robust pretraining less significant. A more practical scenario
is linear finetuning: One freezes the pretrained feature encoder for the downstream task and only
partially finetunes a linear prediction head. The work [27] evaluated the performance of linear
fintuning but observed a relatively large performance gap between the standard linear finetuning and
adversarial linear finetuning; see more comparisons in Figure 1. Therefore, the problem–how to

enhance robustness transferability from pretraining to linear finetuning–remains unexplored.
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3 Problem Statement

In this section, we present the problem of our interest, together with its setup.

Robust pretraining + linear finetuning. We aim to develop robustness enhancement solutions
by fully exploiting and exploring the power of CL at the pretraining phase, so that the resulting
robust feature representations can seamlessly be used to generate robust predictions of downstream
tasks using just a lightweight finetuning scheme. With the aid of AT (1), we formulate the ‘robust

pretraining + linear finetuning’ problem below:
Pretraining: min

✓
Ex2X max

k�k1✏
`pre(x+ �, x; ✓) (2)

Finetuning: min
✓c

E(x,y)2D `CE(�✓c � f✓(x), y), (3)

where `pre denotes a properly-designed robustness- and generalization-aware CL loss (see Sec. 4)
given as a function of the adversarial example (x + �), original example x and feature encoder
parameters ✓. In (2), �✓c � f✓ denotes the classifier by equipping the linear prediction head �✓c (with
parameters ✓c to be designed) on top of the fixed feature encoder f✓, and `CE denotes the supervised
CE loss over the target dataset D. Note that besides the standard linear finetuning (3), one can also
modify (3) using the worst-case CE loss for adversarial linear/full finetuning [26, 27]. We do not
consider standard full finetuning in the paper since tuning the full network weights with standard
cross-entropy loss is not possible for the model to preserve robustness [25].

Cross-task robustness transferability. Different from supervised/semi-supervised learning, self-
supervision enables robust pretraining over unlabeled source data. In the meantime, it also imposes a
new challenge that we call ‘cross-task robustness transferability’: At the pretraining stage, a feature
encoder is learned over a ‘pretext’ task for which ground-truth is available for free, while finetuning
is typically carried out on a new downstream task. Spurred by the above, we ask the following
questions:

• Will CL improve adversarial robustness using just standard linear finetuning?
• What are the principles that CL should follow to preserve robustness across tasks?
• What are the insights can we acquire from self-supervised robust representation learning?

4 Proposed Approach: Adversarial Contrastive Learning (ADVCL)
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Figure 2: The overall pipeline of ADVCL. It mainly has two ingredients:
robustness-aware view selection (orange box) and pseudo-supervision
stimulus generation (blue box). The view selection mechanism is ad-
vanced by high frequency components, and the supervision stimulus
is created by generating pseudo labels for each image through CLUS-
TERFIT. The pseudo label (in yellow color) can be created in an offline
manner and will not increase the computation overhead.

In this section, we develop a
new adversarial CL framework,
ADVCL, which includes two
main components, robustness-
aware view selection and pseudo-
supervision stimulus generation.
In particular, we advance the view
selection mechanism by taking
into account proper frequency-
based data transformations that
are beneficial to robust represen-
tation learning and pretraining
generalization ability. Further-
more, we propose to design and
integrate proper supervision stim-
ulus into ADVCL so as to im-
prove the cross-task robustness
transferability since robust rep-
resentations learned from self-
supervision may lack the class-discriminative ability required for robust predictions on downstream
tasks. We provide an overview of ADVCL in Figure 2.

4.1 View selection mechanism

In contrast to standard CL, we propose two additional contrastive views: the adversarial view and the
frequency view, respectively.
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Multi-view CL loss Prior to defining new views, we first review the NT-Xent loss and its multi-
view version used in CL. Following notations defined in Sec. 2, the contrastive loss with respect to
(w.r.t.) a positive pair (⌧1(x), ⌧2(x)) of each (unlabeled) data x is given by

`CL(⌧1(x), ⌧2(x)) = �
2X

i=1

X

j2P(i)

log
exp

�
sim(zi, zj)/t

�
X

k2N (i)

exp
�
sim(zi, zk)/t

� , (4)

where recall that zi = g � f(⌧i(x)) is the projected feature under the ith view, P(i) is the set of
positive views except i (e.g., P(i) = {2} if i = 1), N (i) denotes the set of augmented batch data
except the point ⌧i(x), the cardinality of N (i) is (2b� 1) (for a data batch of size b under 2 views),
sim(zi1, zi2) denotes the cosine similarity between representations from two views of the same data,
exp denotes exponential function, sim(·, ·) is the cosine similarity between two points, and t > 0 is a
temperature parameter. The two-view CL objective can be further extend to the multi-view contrastive

loss [47]

`CL(⌧1(x), ⌧2(x), . . . , ⌧m(x)) = �
mX

i=1

X

j2P(i)

log
exp

�
sim(zi, zj)/t

�
X

k2N (i)

exp
�
sim(zi, zk)/t

� , (5)

where P(i) = [m]/{i} denotes the m positive views except i, [m] denotes the integer set
{1, 2, . . . ,m}, and N (i), with cardinality (bm� 1), denotes the set of m-view augmented b batch
samples except the point ⌧i(x).

Contrastive view from adversarial example Existing methods proposed in [26–28] can be ex-
plained based on (4): An adversarial perturbation � w.r.t. each view of a sample x is generated by
maximizing the contrastive loss:

�⇤1 , �
⇤
2 = argmax

k�ik1✏
`CL(⌧1(x) + �1, ⌧2(x) + �2). (6)

A solution to problem (6) eventually yields a paired perturbation view (⌧1(x) + �⇤1 , ⌧2(x) + �⇤2).
However, the definition of adversarial view (6) used in [26–28] may not be proper. First, standard
CL commonly uses aggressive data transformation that treats small portions of images as positive
samples of the full image [35]. Despite its benefit to promoting generalization, crafting perturbations
over such aggressive data transformations may not be suitable for defending adversarial attacks
applied to full images in the adversarial context. Thus, a new adversarial view built upon x rather than
⌧i(x) is desired. Second, the contrastive loss (4) is only restricted to two views of the same data. As
will be evident later, the multi-view contrastive loss is also needed when taking into account multiple
robustness-promoting views. Spurred by above, we define the adversarial view over x, without
modifying the existing data augmentations (⌧1(x), ⌧2(x)). This leads to the following adversarial
perturbation generator by maximizing a 3-view contrastive loss

�⇤ = argmax
k�k✏

`CL(⌧1(x), ⌧2(x), x+ �), (7)

where x+ �⇤ is regarded as the third view of x.

Contrastive view from high-frequency component Next, we use the high-frequency component
(HFC) of data as another additional contrastive view. The rationale arises from the facts that 1)
learning over HFC of data is a main cause of achieving superior generalization ability [48] and 2) an
adversary typically concentrates on HFC when manipulating an example to fool model’s decision
[49]. Let F and F�1 denote Fourier transformation and its inverse. An input image x can then be
decomposed into its HFC xh and low-frequency component (LFC) xl:

xh = F�1(qh), xl = F�1(ql), [qh, ql] = F(x). (8)

In (8), the distinction between qh and ql is made by a hard thresholding operation. Let q(i, j) denote
the (i, j)th element of F(x), and c = (c1, c2) denote the centriod of the frequency spectrum. The
components ql and qh in (8) are then generated by filtering out values according to the distance from
c: qh(i, j) = [d((i,j),(c1,c2))�r] · q(i, j), and ql(i, j) = [d((i,j),(c1,c2))r] · q(i, j), where d(·, ·) is
the Euclidian distance between two spatial coordinates, r is a pre-defined distance threshold (r = 8
in all our experiments), and [.] 2 {0, 1} is an indicator function which equals to 1 if the condition
within [·] is met and 0 otherwise.

5



Robustness-aware contrastive learning objective By incorporating the adversarial perturbation
� and disentangling HFC xh from the original data x, we obtain a four-view contrastive loss (5)
defined over (⌧1(x), ⌧2(x), x+ �, xh),

`advCL (✓;X ) := Ex2X max
k�k1✏

`CL(⌧1(x), ⌧2(x), x+ �, xh; ✓), (9)

where recall that X denotes the unlabeled dataset, ✏ > 0 is a perturbation tolerance during training,
and for clarity, the four-view contrastive loss (5) is explicitly expressed as a function of model
parameters ✓. As will be evident latter, the eventual learning objective ADVCL will be built upon (9).

4.2 Supervision stimulus generation: ADVCL empowered by CLUSTERFIT

On top of (9), we further improve the robustness transferability of learned representations by gen-
erating a proper supervision stimulus. Our rationale is that robust representation could lack the
class-discriminative power required by robust classification as the former is acquired by optimizing
an unsupervised contrastive loss while the latter is achieved by a supervised cross-entropy CE loss.
However, there is no knowledge about supervised data during pretraining. In order to improve cross-
task robustness transferability but without calling for supervision, we take advantage of CLUSTERFIT
[50], a pseudo-label generation method used in representation learning.

To be more concrete, let fpre denote a pretrained representation network that can generate latent
features of unlabeled data. Note that fpre can be set available beforehand and trained over either
supervised or unsupervised dataset Dpre, e.g., ImageNet using using CL in experiments. Given
(normalized) pretrained data representations {fpre(x)}x2X , CLUSTERFIT uses K-means clustering

to find K data clusters of X , and maps a cluster index c to a pseudo-label, resulting in the pseudo-
labeled dataset {(x, c) 2 X̂ }. By integrating CLUSTERFIT with (9), the eventual training objective
of ADVCL is then formed by

min
✓

`advCL (✓;X ) + �min
✓,✓c

E(x,c)2X̂ max
k�cek1✏

`CE(�✓c � f✓(x+ �ce), c)

| {z }
Pseudo-classification enabled AT regularization

, (10)

where X̂ denotes the pseudo-labeled dataset of X , �✓c denotes a prediction head over f✓, and � > 0
is a regularization parameter that strikes a balance between adversarial contrastive training and
pseudo-label stimulated AT. When the number of clusters K is not known a priori, we extend (10) to
an ensemble version over n choices of cluster numbers {K1, . . . ,Kn}. Here each cluster number Ki

is paired with a unique linear classifier �i to obtain the supervised prediction �i � f (using cluster
labels). The ensemble CE loss, given by the average of n individual losses, is then used in (10). Our
experiments show that the ensemble version usually leads to better generalization ability.

5 Experiments
In this section, we demonstrate the effectiveness of our proposed ADVCL from the following aspects:
(1) Quantitative results, including cross-task robustness transferability, cross-dataset robustness
transferability, and robustness against PGD attacks [10] and Auto-Attacks [36]; (2) Qualitative
results, including representation t-SNE [51], feature inversion map visualization, and geometry of
loss landscape; (3) Ablation studies of ADVCL, including finetuning schemes, view selection choices,
and supervision stimulus variations.

Experiment setup We consider three robustness evaluation metrics: (1) Auto-attack accuracy (AA),
namely, classification accuracy over adversarially perturbed images via Auto-Attacks; (2) Robust
accuracy (RA), namely, classification accuracy over adversarially perturbed images via PGD attacks;
and (3) Standard accuracy (SA), namely, standard classification accuracy over benign images without
perturbations. We use ResNet-18 for the encoder architecture of f✓ in CL. Unless specified otherwise,
we use 5-step `1 projected gradient descent (PGD) with ✏ = 8/255 to generate perturbations during
pretraining, and use Auto-Attack and 20-step `1 PGD with ✏ = 8/255 to generate perturbations
in computing AA and RA at test time. We will compare ADVCL with the CL-based adversarial
pretraining baselines , ACL [26], RoCL [27], (non-CL) self-supervised adversarial learning baseline
AP-DPE [25] and the supervised AT baseline [10].

5.1 Quantitative Results
Overall performance from pretraining to finetuning (across tasks) In Table 1, we evaluate the
robustness of a classifier (ResNet-18) finetuned over robust representations learned by different
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Table 1: Cross-task performance of ADVCL (in dark gray color), compared with supervised (in white color)
and self-supervised (in light gray color) baselines, in terms of AA, RA and SA on CIFAR-10 with ResNet-18.
The pretrained models are evaluated under the standard linear finetuning (SLF) setting and the adversarial full
finetuning (AFF) setting. The top performance is highlighted in bold.

Pretraining
Method

Finetuning
Method

CIFAR-10 CIFAR-100
AA(%) RA(%) SA(%) AA(%) RA(%) SA(%)

Supervised Standard
linear

finetuning
(SLF)

42.22 44.4 79.77 19.53 23.41 50.53
AP-DPE[25] 16.07 18.22 78.30 4.17 6.23 47.91

RoCL[27] 28.38 39.54 79.90 8.66 18.79 49.53
ACL[26] 39.13 42.87 77.88 16.33 20.97 47.51

ADVCL (ours) 42.57 50.45 80.85 19.78 27.67 48.34

Supervised Adversarial
full

finetuning
(AFF)

46.19 49.89 79.86 21.61 25.86 52.22
AP-DPE[25] 48.13 51.52 81.19 22.53 26.89 55.27

RoCL[27] 47.88 51.35 81.01 22.38 27.49 55.10
ACL[26] 49.27 52.82 82.19 23.63 29.38 56.61

ADVCL (ours) 49.77 52.77 83.62 24.72 28.73 56.77

supervised/self-supervised pretraining approaches over CIFAR-10 and CIFAR-100. We focus on two
representative finetuning schemes: the simplest standard linear finetuning (SLF) and the end-to-end
adversarial full finetuning (AFF). As we can see, the proposed ADVCL method yields a substantial
improvement over almost all baseline methods. Moreover, ADVCL improves robustness and standard
accuracy simultaneously.

Table 2: Cross-dataset performance of ADVCL (dark gray color), compared
with supervised (white color) and self-supervised (light gray) baselines, in
AA, RA, SA, on STL-10 with ResNet-18.

Method Fine-
tuning

CIFAR-10 �! STL-10 CIFAR-100 �! STL-10
AA(%) RA(%) SA(%) AA(%) RA(%) SA(%)

Supervised

SLF
22.26 30.45 54.70 19.54 23.63 51.11

RoCL[27] 18.65 28.18 54.56 12.39 21.93 47.86
ACL[26] 25.29 31.80 55.81 21.75 26.32 45.91
ADVCL (ours) 25.74 35.80 63.73 20.86 30.35 50.71

Supervised

AFF
33.10 36.7 62.78 29.18 32.43 55.85

RoCL[27] 29.40 34.65 61.75 27.55 31.38 57.83
ACL[26] 32.50 35.93 62.65 28.68 32.41 57.16
ADVCL (ours) 34.70 37.78 63.52 30.51 33.70 61.56

Robustness transferability
across datasets In Table 2,
we next evaluate the robust-
ness transferability across dif-
ferent datasets, where A !
B denotes the transferability
from pretraining on dataset
A to finetuning on another
dataset B ( 6= A) of represen-
tations learned by ADVCL.
Here the pretraining setup is
consistent with Table 1. We
observe that ADVCL yields
better robustness as well as standard accuracy than almost all baseline approaches under both SLF
and AFF finetuning settings. In the case of CIFAR-100 �! STL-10, although ADVCL yields 0.89%
AA drop compared to ACL [26], it yields a much better SA with 4.8% improvement.
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Figure 3: RA of ADVCL and baseline approaches under various
PGD attacks. SLF is applied to the pretrained model.

Robustness evaluation vs. attack
strength It was shown in [52]
that an adversarial defense that
causes obfuscated gradients results
in a false sense of model robustness.
The issue of obfuscated gradients
typically comes with two ‘side ef-
fects’: (a) The success rate of PGD
attack ceases to be improved as the
`1-norm perturbation radius ✏ in-
creases; (b) A larger number of
PGD steps fails to generate stronger
adversarial examples. Spurred by
the above, Figure 3 shows the finetuning performance of ADVCL (using SLF) as a function of the
perturbation size ✏ and the PGD step number. As we can see, ADVCL is consistently more robust
than the baselines at all different PGD settings for a significant margin.

7



5.2 Qualitative Results
Class discrimination of learned representations To further demonstrate the efficacy of ADVCL,
Figure 4 visualizes the representations learned by self-supervision using t-SNE [51] on CIFAR-10.
We color each point using its ground-truth label. The results show representations learned by ADVCL
have a much clearer class boundary than those learned with baselines. This indicates that ADVCL
makes an adversary difficult to successfully perturb an image, leading to a more robust prediction.

(a) RoCL [27] (b) ACL [26] (c) ADVCL (ours)
Figure 4: t-SNE visualization of representations learned with different self-supervised pretraining
approaches. Our ADVCL gives a much clearer separation among classes than baseline approaches.

Seed Images AT RoCL ACL ADVCL

Figure 5: FIM visualization of neuron 502 under
CIFAR-10 using different robust training methods.
Column 1 contains different seed images to generate
FIM. Columns 2-5 are FIMs using models trained with
different approaches.

Visual interpretability of learned representa-
tions Furthermore, we demonstrate the advan-
tage of our proposals from the perspective of
model explanation, characterized by feature in-
version map (FIM) [53] of internal neurons’ re-
sponse. The work [17, 54, 55] showed that model
robustness offered by supervised AT and its vari-
ants enforces hidden neurons to learn perceptually-
aligned data features through the lens of FIM.
However, it remains unclear whether or not self-

supervised robust pretraining is able to render ex-
plainable internal response. Following [53, 54],
we acquire FIM of the ith component of represen-
tation vector by solving the optimization problem
xFIM = min�[f✓(x0 + �)]i, where x0 is a ran-
domly selected seed image, and [·]i denotes the
ith coordinate of a vector. Figure 5 shows that
compared to other approaches, more similar texture-aligned features can be acquired from a neuron’s
feature representation of the network trained with our method regardless of the choice of seed images.

Flatter loss landscape implies better transferability It has been shown in [56] that the flat-
ness of loss landscape is a good indicator for superb transferability in the pretraining + finetuning
paradigm. Motivated by that, Figure 6 presents the adversarial loss landscape of ADVCL and other
self-supervised pretraining approaches under SLF, where the loss landscape is drawn using the
method in [57]. Note that instead of standard CE loss, we visualize the adversarial loss w.r.t. model
weights. As we can see, the loss for ADVCL has a much flatter landscape around the local optima,
whereas the losses for the other approaches change more rapidly. This justifies that our proposal has
a better robustness transferability than baseline approaches.

(a) RoCL [27] (b) ACL [26] (c) ADVCL(ours)
Figure 6: Visualization of adversarial loss landscape w.r.t. model weights using different self-supervised
pretraining methods. ADVCL gives a much flatter landscape than the other baselines.
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Table 3: Performance (RA and SA) of ADVCL
(in dark gray color) and baseline approaches on
CIFAR-10, under different linear finetuning strate-
gies: SLF and adversarial linear finetuning (ALF).

Method SLF ALF
RA(%) SA(%) RA(%) SA(%)

Supervised 44.40 79.77 46.75 79.06
RoCL[27] 39.54 79.90 43.11 77.33
ACL[26] 42.87 77.88 45.40 77.71
ADVCL(ours) 50.45 80.85 52.01 79.39

Table 4: Performance (RA and SA) of ADVCL us-
ing different contrastive views setups. ResNet-18
is the backbone network, CIFAR-10 is the dataset,
and SLF is used for classification.

Contrastive Views RA(%) SA(%)
⌧1(x) + �1, ⌧2(x) 42.12 77.07
⌧1(x) + �1, ⌧2(x) + �2 42.48 73.12
⌧1(x) + �1, ⌧2(x) + �2, ⌧1(x), ⌧2(x) 43.51 74.22
x+ �, ⌧1(x), ⌧2(x) 50.19 80.17
x+ �, ⌧1(x), ⌧2(x), xl 49.51 79.83
x+ �, ⌧1(x), ⌧2(x), xl, xh 50.03 80.14
x+ �, ⌧1(x), ⌧2(x), xh 50.45 80.85

Table 5: Performance (RA and SA) of ADVCL using
various pretrained models fpre and cluster numbers
K in CLUSTERFIT, as well as the baseline w/o using
CLUSTERFIT. The setup of fpre is specified by the
training method (supervised training or SimCLR) and
training dataset (ImageNet or CIFAR-10). ADVCL
is implemented using unlabeled data from CIFAR-10
under ResNet-18, together with SLF over the acquired
feature encoder for supervised CIFAR-10 classification.

fpre setup:
(dataset, training) Cluster number K RA (%) SA (%)

N/A w/o CLUSTERFIT 48.89 77.73

(CIFAR-10, SimCLR) 10 50.10 80.34
100 49.21 79.52

(ImageNet, supervised) 10 50.16 78.27
100 49.27 78.08

(ImageNet, SimCLR)

2 50.09 79.72
10 50.12 79.93
50 49.27 79.55

100 49.16 79.07
500 49.03 78.96

Ensemble 50.45 80.85

5.3 Ablation studies
Linear finetuning types We first study the robustness difference when different linear finetuning
strategies: Standard linear finetuning (SLF) and Adversarial linear finetuning (ALF) are applied.
Table 3 shows the performance of models trained with different pretraining methods. As we can see,
our ADVCL achieves the best performance under both linear finetuning settings and outperforms
baseline approaches in a large margin. We also note the performance gap between SLF and ALF
induced by our proposal ADVCL is much smaller than other approaches, and ADVCL with SLF
achieves much better performance than baseline approaches with ALF. This indicates that the
representations learned by ADVCL is already sufficient to yield satisfactory robustness.

View selection setup We illustrate how different choices of contrastive views influence the ro-
bustness performance of ADVCL in Table 4. The first 4 rows study the effect of different types of
adversarial examples in contrastive views, and our proposed 3-view contrastive loss (7) significantly
outperforms the other baselines, as shown in row 4. The rows in gray show the performance of further
exploring different image frequency components (8) as different contrastive views. It is clear that the
use of HFC leads to the best overall performance, as shown in the last row.

Supervision stimulus setup We further study the performance of ADVCL using different supervi-
sion stimulus. Specifically, we vary the pretrained model for fpre and pseudo cluster number K when
training ADVCL and summarize the results in Table 5. The results demonstrate that adding the super-
vision stimulus could boost the performance of ADVCL. We also observe that the best result comes
from fpre pretrained on Imagenet using SimCLR. This is because such representations could general-
ize better. Moreover, the ensemble scheme over pseudo label categories K 2 {2, 10, 50, 100, 500}
yields better results than using a single number of clusters. The ensemble scheme also makes ADVCL
less sensitive to the actual number of labels for the training dataset.

6 Conclusion

In this paper, we study the good practices in making contrastive learning robust to adversarial
examples. We show that adding perturbations to original images and high-frequency components
are two beneficial factors. We further show that proper supervision stimulus could improve model
robustness. Our proposed approaches can achieve state-of-the-art robust accuracy as well as standard
accuracy using just standard linear finetuning. Extensive experiments involving quantitative and
qualitative analysis have also been made not only to demonstrate the effectiveness of our proposals
but also to rationalize why it yields superior performance. Future works could be done to improve the
scalability of our proposed self-supervised pretraining approach to very large datasets and models to
further boost robust transferabilty across datasets.
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