
TOWARDS EFFICIENT ACTION RECOGNITION: PRINCIPAL BACKPROPAGATION FOR TRAINING TWO-STREAM NETWORKS 1

Towards Efficient Action Recognition:
Principal Backpropagation for Training Two-Stream

Networks
Wenbing Huang∗, Lijie Fan∗, Mehrtash Harandi, Lin Ma, Huaping Liu, Wei Liu, Chuang Gan

Abstract—In this paper, we propose a novel Principal Back-
propagation Networks (PBNets) to revisit the backpropagation
algorithms commonly used in training two-stream networks for
video action recognition. We content that existing approaches
always take all the frames/snippets for the backpropagation not
optimal for video recognition since the desired actions only occur
in a short period within a video. To remedy these drawbacks,
we design a Watch-and-Choose mechanism. In particular, the
watching stage exploits a dense snippet-wise temporal pooling
strategy to discover the global characteristic for each input
video, while the choosing phase only backpropagates a small
number of representative snippets that are selected with two novel
strategies, i.e. Max-rule and KL-rule. We prove that with the
proposed selection strategies, performing the backpropagation
on the selected subset is capable of decreasing the loss of the
whole snippets as well. The proposed PBNets are evaluated on
two standard video action recognition benchmarks UCF101 and
HMDB51, where it surpasses the state-of-the-arts consistently,
but requiring less memory and computation to achieve high
performance.

Index Terms—Action recognition, Two-stream networks, Prin-
cipal Backpropagation Networks, temporal pooling strategy.

I. INTRODUCTION

Action recognition from videos is a highly active line of
research due to its broad applications (e.g., video surveil-
lance [1] and human behavior analysis [2]). In the past five
years or so, deep architectures and in particular Convolutional
Neural Networks (CNNs) have matured at a meteoric speed
when image classification is taken into account. However,
the same cannot be said when spatiotemporal data and in
particular the problem of action recognition is considered.
This, by no means, implying that “no progress has been made”,
but merely reflecting the difficulty associated with analyzing
spatiotemporal data. In fact, applying deep solutions for action
recognition demands a particular network design for modeling
the motion patterns.

State-of-the-art methods for action recognition analyze spa-
tiotemporal video data through two-stream networks [3], [4],
[5], [6], [7]. The two-stream network [3] is a clever design
to benefit from spatiotemporal information in recognizing

∗ denote equal contributions for this paper.
Wenbing Huang, Lin Ma, and Wei Liu are with Tencent AI Lab; Lijie

Fan is with Computer Science and Artificial Intelligence Lab, Massachusetts
Institute of Technology; Mehrtash Harandi is in the department of Electrical
and Computer Systems Engineering at Monash University; Chuang Gan is
with MIT-Watson Lab; Huaping Liu is with Department of Computer Science
and Technology, Tsinghua University.

Contacting Email: ganchuang1990@gmail.com.

CNN

CNN

CNN

CNN

y

Sampled
Snippets

CNN
Features

Temporal
Pooling

Output

Only forward pass Forward-backward pass

f1

f2

f3

fn

Prinicipal
Snippets

Fig. 1. We propose the Principal Backpropagation Networks (PBNets) for
action recognition with long temporal awareness. PBNets perform the forward
pass for all sampled snippets but conduct a complete forward-backward pass
for only the selected snippets.

actions. Noting that learning appearance and motion clues
jointly could become overwhelming, Simonyan and Zisserman
propose to simplify the learning procedure [3] via two separate
networks. In two-stream models, the spatial network targets
appearance of actions while the temporal network is explicitly
fed with optical flow data to learn the motion clues.

The original structure of the two-stream networks has a
short temporal span (10 frames to be specific). This in turn
makes the network vulnerable for tasks with long-term de-
pendencies. Several studies suggest pooling the features along
or between the streams to circumvent this shortcoming [4],
[8], [6]. Equipping the two-stream network with a recurrent
network is also considered in the literature to address the same
problem [4], [9]. Very recently, Wang et al. propose Temporal-
Segment-Networks (TSNs) where a sparse sampling method
is employed to train the two-stream networks [7]. To be brief,
a video is first partitioned into several segments. From each
segment, a snippet, specifically an RGB frame for the spatial
stream and an optical-flow stack for the temporal stream, is
chosen randomly and used consequently to train the two-
stream networks

TSN is proved to be exceptionally successful in train-
ing two-stream networks, leading to state-of-the-art perfor-
mances [7]. This can be attributed to the fact that the snippets
extracted from the video segments are aggregated together,

TOWARDS EFFICIENT ACTION RECOGNITION: PRINCIPAL BACKPROPAGATION FOR TRAINING TWO-STREAM NETWORKS 2

thus leading to a better representation of temporal evolution
over the appearance and optical-flow for the entire video.
In practice, the TSN splits each video into three segments.
This raises a natural question, is it enough to have only
three segments to model the evolution of appearance/optical-
flow? Training with three segments may sound like a design-
choice in TSNs. On one hand, complex actions such as
playing basketball, usually contains multiple motion compo-
nents (i.e., bouncing, holding and shooting), and it demands
more snippets to cover the entire story. However, as we
will shortly show, having more segments in TSNs will not
only incur heavy computations during backpropagation but
also increase the memory footprint significantly. On the other
hand, recognizing actions based on videos is indeed a weakly
supervised learning problem where only the video-level label
is available. Intuitively, not all of the snippets within a video
are related to the action itself. For better classification, we need
to find out the key snippets and then perform aggregation over
them.

In this paper, we introduce the Principal Backpropagation
Networks (PBNets), a variant of the two-stream networks [3]
with long temporal awareness. Compared to previous studies,
our solution benefits from denser temporal sampling which
in turn leads to learning longer-temporal information. This
however comes at a very economical cost in terms of back-
propagation and memory requirement. Our contributions in
this work can be summarized as follows:

• We design a Watch and Choose mechanism to train
the two-stream networks efficiently. In the Watch phase,
we perform the forward pass for all sampled snippets
in CNNs to obtain the full temporal information. In
the Choose phase, we select a representative subset of
snippets to perform a complete forward-backward com-
putations for each input video.

• We propose two selection rules, namely the Max-
rule(§ III-B1) and the KL-rule(§ III-B2). The Max-rule
attempts to find the “worse” snippets to bound the opti-
mization loss, while the KL-rule aims at choosing the “n-
earest” ones to the full video under the Kullback-Leibler
divergence. We theoretically prove that both rules are
guaranteed to decrease the loss of all sampled snippets.

• The proposed method provides superior results than
other counterparts on two popular action recognition
benchmarks, i.e. 95.4% on UCF101 [10] and 72.5% on
HMDB51 [11].

II. RELATED WORK

Traditionally, actions were described using 3D primitive
shapes, silhouettes and motion signatures to name a few. Later
on, methods based on aggregating hand-crafted local features
(e.g., motion boundary histograms) were shown to deliver
better performances [12], [13], [14], [15], [16]. See [17] and
references therein for a recent review.

The current trend, following the success of hand-crafted
local features, is to learn video descriptors directly from data
using the concept of deep learning [2], [8], [4], [17]. Naturally,
a deep net should capture both appearance and motion clues

towards recognizing actions. This is because some actions can
be merely identified using their appearances (e.g., playing
flute) while for fine-grained actions motion information is
required.

To address this need, two strategies have shaped the lit-
erature lately. Some studies opt for learning the appearance
and motion information jointly by extending 2D convolutional
layers to their 3D counterparts [2]. On the other hand, the
idea of two-stream networks [3] demonstrates that separating
the learning procedure (at least partially) is beneficial. This is
achieved by training two networks, one using the appearance
(i.e., RGB) data and one using motion information (i.e., optical
flow). In defense of the two-stream networks, we note that
modeling motion information through 3D convolutional filters
not only is computationally expensive but also attains limited
gains empirically [4]. As such and inline with our work,
here we chiefly focus on recent developments in two-stream
solutions.

The original two-stream network, proposed by Simonyan
and Zisserman, uses two separate networks on RGB and
optical flow data along a layer that combines the softmax
scores of the streams into final decisions [3]. Questioning the
short-term span of two-stream networks, Ng et al. proposed
various ways of pooling across each stream to increase the
temporal-awareness of the networks [4]. Replacing feature
pooling with recurrent networks was also studied in [4], though
empirically pooling showed to be superior. A relevant study is
the work of Wang et al. [7] where temporal segment networks
are introduced to again circumvent the drawback of short
temporal span. The induced randomness and sparsity along
the explicit use of segments are proved to be exceptionally
successful in training two-stream networks, leading to state-
of-the-art performances. The authors in [18] also proposed to
mine key frames for better classification accuracies. However,
the method only processes one snippet for one video and
never performs aggregation over multiple snippets to consider
long-range temporal dependency. There are also a line of
researches focusing on making use of the correlations be-
tween two streams to boost the recognition performance. For
instance, the work by [5] proposed to use residual connections,
the spatial-temporal pooling between streams was developed
in [6], the Spatiotemporal Multiplier Network [19] studied the
multiplicative gating functions and the spatiotemporal pyramid
network by [20] proposed to fuse the spatial and temporal
features in a pyramid structure. A more recent work is the
TVNet proposed by [21] that further facilitates the training
of the two-stream models. By replacing the TV-L1 method
with a trainable deep neural network, TVNet enables well
initialization and end-to-end training of optical flows.

Before concluding this part, we acknowledge the work of
Shrivastava et al. where a similar idea to ours was proposed,
albeit for the task of object detection [22]. We note that for
object detection, the proposals are considered as different data
points and their losses are independent. On the contrary, for
the task of video recognition, the sampled snippets together
represent the whole video, and the selection of the principal
snippets depends on their correlations with the global video
information.

TOWARDS EFFICIENT ACTION RECOGNITION: PRINCIPAL BACKPROPAGATION FOR TRAINING TWO-STREAM NETWORKS 3

III. OUR APPROACH

We start this section by briefly reviewing the temporal
pooling strategy developed for the two-stream networks and
follow it up by presenting our proposed model, i.e. the PBNets.

A. Temporal Pooling Strategy

State-of-the-art two-stream networks benefit from long-
range temporal structures by temporal pooling (e.g., [4], [7]).
In short, snippets sampled from the video are processed by
each stream and the results are combined by pooling layers.
A snippet corresponds to an individual frame for the spatial
stream and a stack of optical-flow frames for the temporal
stream. To establish the ideas behind the PBNets, we need
to detail out the forward and backward passes in two-stream
networks.

Forward pass. Let S1, S2, · · · , Sm denote m snippets
sampled from a video. All the snippets are fed into the CNN
and their output features are computed as,

f i = Forward(Si;W), i ∈ {1, · · · ,m} , (1)

where W is the parameters of the CNN. The features associ-
ated to the snippets are pooled as,

z = Pooling(f1,f2, · · · ,fm). (2)

The pooling function in Eq. (2) can be max, average or even a
weighted linear form. Following [7], we use average pooling
in our work. The result of pooling is sent to a softmax layer
to compute class likelihoods as,

p = SoftMax(z). (3)

With the likelihoods at our disposal, we can obtain the cross-
entropy loss

L(p, y) = CrossEntropy(p, y), (4)

where y is the label for the input video.
Backward pass. In the backward pass, the gradients of

the loss with respect to the features f1,f2, · · · ,fm are
first obtained. Then the CNN parameters are updated by
backpropagating the gradients through the network as

∂L(p, y)

∂W
=

m∑
i=1

∂L(p, y)

∂f i

∂f i

∂W
. (5)

Obviously, the above temporal pooling strategy will become
overwhelming if one wants to discover richer temporal patterns
by simply processing more snippets, i.e., increasing the value
of m for each video. This is because both the forward
pass (Eq. (1)) and the backpropagation (Eq. (5)) need to be
performed m times. Furthermore, the activations of all the
CNN units for all the m snippets should be stored in the
memory for backward computations; thus, a larger m will
inevitably cost more memory resource. In the next section, we
show how our idea enables us to benefit from richer temporal
information while avoiding extensive computations.

B. Principal Backpropagation Networks

The PBNet consists of two processes: the full forward pass
and the principal backward pass, as illustrated in Figure 2.

For the full forward pass, as the name implies, we feed
all sampled snippets to the CNN to obtain their features
by Eq. (1). For the backward pass, only a small number
of principle snippets are chosen for backpropagation. To be
specific, we denote the selected snippets as Sq1 , Sq2 , · · · , Sqn ,
where n < m and the indexes qi ∈ {1, 2, · · · ,m}. We first
perform the pooling operation on these snippets as

z∗ = Pooling(f q1 ,f q2 , · · · ,f qn). (6)

Then we obtain the cross-entropy loss as L(p∗, y) by using
Eq. (3) and Eq. (4). To compute the gradients with respect to
the CNN parameters, we carry out the backpropagation as

∂L(p∗, y)

∂W
=

n∑
i=1

∂L(p∗, y)

∂f qi

∂f qi

∂W
. (7)

Compared to the full backpropagation in Eq. (5), the com-
plexity here has been decreased from O(m) to O(n). With
a small number of snippets, ensuring that the performance is
similar to that of the full backpropagation is critical. Therefore,
it naturally arises a new question how the principal snippets
should be chosen?

Intuitively, the selected snippets should have some underling
correlations with the whole set. If we train the CNN with
the selected inputs, we must make sure that the loss of the
whole snippets is also minimized to some extent. Moreover,
an ideal selection scheme should efficiently filer the redundant
or irrelevant information for better classification. To achieve
this, we propose two selection rules: the Max-rule and the
KL-rule.

Before presenting the main results, we define a few
notations. Let {F1,F2, · · · ,Fg} be a partition of F =
{f1,f2, · · · ,fn}, i.e., F =

⋃g
i=1 Fi and Fi

⋂
Fj = ∅, for i 6=

j. We denote the elements of Fi by {f qi,1 ,f qi,2 , · · · ,f qi,n}.
We note that the partitions (i.e., Fi) are equal-size (this can
be easily achieved by sampling enough snippets in practice).

1) Max-Rule: Let z and zj denote the pooling results of F
and its j-th partition (i.e., Fj), respectively; p and pj are the
associated softmax outputs. The following theorem establishes
the relationships between their cross-entropy losses.

Theorem 1. If the snippets are pooled using average pooling
(see Eq. (2))1, then we have

L(p, y) ≤ 1

g

g∑
j

L(pj , y) ≤ max
1≤j≤g

L(pj , y), (8)

where L(·, ·) is given by Eq. (4).

Proof. See the supplementary material.

For simplicity, hereafter, we name the loss generated by the
whole snippets (i.e. L(p, y)) and its j-th subset (i.e. L(pj , y))
as the full and partial losses, respectively. Theorem 1 states that

1 Although we only consider the average pooling in Theorem 1, the result
is also applicable to the weighted pooling, as presented in the supplemenary
material.

TOWARDS EFFICIENT ACTION RECOGNITION: PRINCIPAL BACKPROPAGATION FOR TRAINING TWO-STREAM NETWORKS 4

f1

Multi-temporal-
length inputs

Conv-1-1

f2

f3

f4

f5

f6

Conv-1-2

C
N
N

Loss1

Loss2

CNN features Sampled
combinations

Loss8

S1

S2

S3

S4

S5

S6

Snippets

Pooling

Pooling

Pooling

Videos

Sample

Choose the

“best”loss

Fig. 2. Illustration of the PBNet for the temporal stream. We sample the snippets with multiple temporal lengths. We perform the forward computations for
all snippets and only choose a small number (denoted with red squares) for the complete forward-backward pass via the methods presented in § III-B.

the full loss is bounded by the maximum partial loss. As such,
by minimizing the maximum partial loss, we minimize an
upper-bound of the full loss. Our empirical evaluations show
that this min-max optimization strategy leads to a significant
improvement over the previous practice where minimizing the
full loss was deemed. One can also relate the Max-rule to
the concept of hard example mining (e.g. [22] for object
detection), where the learner is trained by focusing on the
most difficult cases during training.

2) KL-Rule:

Theorem 2. The full and partial losses are related as

L(p, y) = L(pj , y)−DKL(p‖pj)− Ep(zj − z), (9)

where DKL(·, ·) computes the Kullback-Leibler (KL) diver-
gence, Ep(x) is the expected value of x over the distribution
p, z = z − z(y) and zj = zj − z

(y)
j with z(y) and z

(y)
j being

the elements of the y-th class in z and zj , respectively.

Proof. See the supplementary material.

Eq. (9) suggests that by choosing the subset that minimizes
the loss-difference Ldiff = |DKL(p‖pj) + Ep(zj − z)|, one
can hope that the partial loss L(pj , y) gets closer to the full
loss L(p, y). In other words, minimizing L(pj , y) should result
in decreasing L(p, y).

To make use of Theorem 2, we need to consider a subtle
point. The term Ldiff only measures the differences with
respect to class y (see the supplementary material). Thus,
selecting the snippets based on Ldiff may suffer from bias
as it does not take the predictions of other classes into
account. As such, we suggest selecting the principal snippets
by minimizing the KL divergence DKL(z‖zj) instead. In other
words, the subset that has the closest distribution to the whole
should be chosen.

For further explanations of the Max-rule and KL-rule, we
have the following two remarks.

Remark 3. From an optimization perspective, the idea of
replacing the full loss with the partial loss is similar to
constructing a surrogate loss for training. Specifically, the

Max-rule attempts to find the upperbound surrogate, while the
KL-rule aims at choosing the nearest surrogate to the original
loss.

Remark 4. An interesting property of the KL-rule is its
robustness to noisy snippets. To put this into perspective, we
note that the full loss is more robust to outliers/noisy snippets
as a result of the averaging operation. Since the KL-rule
chooses the most similar subset, one expects that the noisy
snippets are avoided.

Note that in addition to the Max or KL-rules, one can
randomly select the principal snippets without any heuristic
consideration for back-propagation. However, this random rule
can actually degenerate to the full back-propagation case
discussed in § III-A by simply setting m = n in Eq. (7). Our
experiments will thoroughly compare the proposed selection
rules with the full back-propagation scheme.

3) Selection from sampled partitions: Selecting the prin-
cipal subset according to the max or KL-rule relies on the
way the whole set is partitioned. An enhanced performance is
expected if we select the snippets across different partitions.
However, this leads to the complexity of O(m× (m−1) · · ·×
(m−n+1)/n!) for the comparisons over all possible partitions,
which will cause a heavy computational burden for a large m.
From a practical view, considering all possible combinations
of the snippets is not necessary as most snippets within a
video are similar to each other. Therefore, we propose a trade-
off method by stochastically sampling a certain number of
combinations. The principal subset is then chosen among those
sampled combinations. In our experiments, we set the number
of the sampled combinations to be 100 and find it sufficient
to obtain the desired performance for the datasets we applied.

4) Multi-Temporal-Length Snippets: For the flow stream,
each snippet captures the local motion component of an
action. In this section, we propose to process the snippets
with variable temporal lengths (i.e., the number of the optical
frames). The motivation behind this is two-fold. First, local
motions naturally have different lengths. Even for the very
same action, the duration of a local motion is influenced

TOWARDS EFFICIENT ACTION RECOGNITION: PRINCIPAL BACKPROPAGATION FOR TRAINING TWO-STREAM NETWORKS 5

by environmental factors. Second, inclusion of snippets with
different temporal lengths increases the diversity among the
training samples, which in turn helps training deep networks
with large number of parameters.

In the original two stream network [3], the authors fed the
optical frames as the channels of the first convolutional layer.
To have multiple temporal lengths, we resort to convolutions
prior to the first layer (see Fig. 2). For example, in our
experiments, we have made use of two convolutional layers,
namely Conv-1-1 with 5 channels to process 5-frame inputs
along Conv-1-2 with 10 channels to handle longer inputs.
Since the output size of Conv-1-1 and Conv-1-2 is equal
(by design), their outputs can be concatenated and fed into
the follow-up layers leading to having the same flow stream
afterwards.

IV. PRACTICAL CONSIDERATIONS

In [7], the inception model with batch-normalization (BN-
Inception) [23] is claimed to be superior to some other choices
like the VGG-16 net [24]. To make fair comparisons, we use
the BN-Inception net as the CNN for the two-stream model.
Pre-training is crucial for the network initialization when the
training samples are not sufficient. Therefore, for the spatial
net, we use the BN-Inception net trained on the ImageNet
data [25]. For the temporal net, we resorted to the cross-
modality skill introduced in [26] for initialization. To prevent
overfitting, we also carry out the corner cropping and scale
jittering.

A. Training the Network
For each video, we generate m snippets by first dividing

the whole video into m segments and then randomly sampling
one snippet from each segment. During training the temporal
net, we consider two types of snippets, namely snippets with
temporal length of 5 and 10. In doing so, half of a mini-batch
is dedicated to snippets with the length of 5 and the other half
to the ones with the length of 10.

We use the mini-batch Stochastic Gradient Descent (SGD)
algorithm to train the networks. Our training process is illus-
trated in Figure 3. Each iteration comprises two phases: the
full forward pass and the principal forward-backward pass. In
particular, the full forward pass processes the m snippets for
each input video, while the principal forward-backward pass
only handles the selected n snippets. In the forward pass, it
is not necessary to propagate the whole batch of videos at
one time since we do not need to have all hidden activations
any more. To save memory, we divide the original batch-size
(denoted as B here) by m/n. The new batch-size becomes
b = Bn/m and is much smaller than B (the number of
snippets is Bn). The full forward pass will process the new
batch-size m/n times. During each forward pass, we choose
n snippets for each video according to the method in § III-B
and store them in the memory. When all forward passes are
done, the total number of the selected snippets is Bn (which
is the same as the number of snippets for each forward pass).
We perform a complete forward-backward computation for
the selected snippets. Our implementation enables the efficient
training in terms of memory cost and running time.

C
N
N

Reshape1

Choosing Principal Snippets

C
N
N

Pooling

Loss

video1
video2

video1
video1

video2

Full Forward
for B/b times

Principal
Forward-backward

for one time

video2

Reshape2

WHmb

WHmb 1

WHBn 1

CnB 1

CB 11

Fig. 3. A visualization of the training procedure for PBNets. Here, H and
W are the height and width of each frame, respectively; C is the number
of the classes. We sample m snippets from each video and picks n for
backpropagation. We perform the full forward pass for b = Bn

m
videos

per time, where B is the min-batch size. At each forward pass, we select
the principal snippets by loss comparisons and store them in the memory.
Once the forward computations of the B videos are finished, we begin the
complete forward-backward pass for the selected snippets. As the CNN is
shared between the forward and backward passes, we apply the ”reshape
layer” (defined in caffe [27]) to reshape the inputs to have the same shape.

B. Testing Scheme

For the spatial stream and following [3], snippets are ex-
tracted from the center and four corners of a video. We sample
25 snippets from each location (i.e., center and corners),
followed by flipping them horizontally to enlarge the testing
samples. All the sampled snippets (250 in total) are fed to
CNN and their outputs are averaged for prediction.

For the temporal net, due to its multi-temporal-length, we
sample 25 snippets of length 5 and another 25 snippets with
length 10, again from the center and the corners, leading to
a total number of 500 snippets after flipping. To fuse the
streams, we take a weighted combination of the spatial and
temporal networks as done in [7]. We average the prediction
scores before the softmax layer as this approach achieves
better results than averaging the softmax scores [5]. We follow
the suggestion by [7], and set the weights of the spatial and
temporal streams to be 2 and 3, respectively.

V. EVALUATIONS

We start this section by introducing benchmark datasets
and implementation details used in our experiments. Later,
we will compare and contrast the proposed selection rules
(see § III-B) and follow it up by studying the performance
of the proposed multi-temporal-length technique. We will also
compare PBNets against the full back-propagation (full-bp)
networks. Finally, we will contrast our models against the

TOWARDS EFFICIENT ACTION RECOGNITION: PRINCIPAL BACKPROPAGATION FOR TRAINING TWO-STREAM NETWORKS 6

state-of-the-arts. Hereafter, we show our model by PBNet-m-
n, meaning n out of m snippets were chosen from each video
during training. We also denote the full-bp models by Full-m
to show m snippets were sampled and backpropagated.

A. Datasets and Implementation Details

Our experiments are conducted on two popular action
recognition datasets, namely the UCF101 [10] and the HMD-
B51 [11] datasets. The UCF101 dataset contains 13320 videos
of 101 action classes. The HMDB51 dataset consists of 6766
videos from 51 action categories. The videos in the HMDB51
dataset are collected from various sources, such as movies
and web videos. For both datasets, we follow the provided
evaluation protocols and report the average accuracy over the
three training/testing splits.

To train the models, we set the mini-batch size to 128 and
the momentum to 0.9. For the spatial stream, the learning
rate was initialized to 0.001 and decreased by a factor of 10
every 1500 iterations. The spatial stream was trained for 5000
iterations on the UCF101 dataset and 3000 iterations on the
HMDB51 dataset. For the temporal stream, the learning rate
was initialized to 0.005. The maximum number of iterations
for the UCF101 and the HMDB51 datasets was chosen as
18000 and 7000, respectively. Again we decreased the learning
rates by a factor of 10 after the 10000th and 16000th iterations
for the UCF101 experiment, and after 4000th and 6000th
iterations for the HMDB51 case.

We computed the optical flow [28] before training and
stored the flow fields as JPEG images by linear compression.
We implemented our networks using Caffe [27]. Our experi-
ments were performed on 8 Tesla M40 GPUs.

B. Which Selection Rule?

We propose two selection rules, i.e., the Max-rule and the
KL-rule, to choose the principal snippets from each video in
§ III-B. To better understand their behaviors, we performed an
experiment using PBNet-6-3 on the first split of the UCF101
dataset. Here, we denote the full loss to be the loss on all
sampled snippets, and the selected partial loss to be the loss
on the selected snippets by the Max-rule or KL-rule. These
two losses are recoded every 20 iterations during training.

Figure 4 and Figure 5 display the training losses for the
temporal and spatial streams, respectively. We first observe that
the full losses produced by the Max-rule is always smaller than
the selected partial losses for both streams, which is consistent
to our statement in Theorem 1.

For the temporal stream (Figure 4), since the Max-rule
chooses the hard examples for training, it naturally gener-
ates higher selected partial losses compared to the KL-rule.
However, the full loss (which we really care about) converges
faster for the Max-rule, suggesting that working with the hard
samples can lead to speed-ups for the optimization on overall
examples.

For the spatial stream (Figure 5), both full and selected par-
tial losses fluctuate more severely for the Max-rule compared
to the KL-rule. The snippets of the spatial stream corresponds
to individual RGB frames. However, a single RGB frame

can reflect incomplete or even erroneous information about
the video, thus selecting the RGB frames with Max-rule can
sometimes confuse the classifier. In contrast, the KL-rule does
not suffer from such an issue as it always attempts to choose
the RGB frames that best represent the whole video.

We summarize the classification accuracies of the Max-rule
and the KL-rule for the flow and RGB modalities in Table I.
The Max-rule achieves better result than the KL-rule for the
temporal net, while the KL-rule outperforms the Max-rule for
the spatial net. We also combine the two stream nets under
4 different possible fusion schemes and report the results in
Table II. Not surprising, the fusion of RGB with the KL-rule
and flow with the Max-rule produces the best accuracy. Based
on this experiment, hereafter, we apply the Max-rule in the
temporal stream and the KL-rule in the spatial stream.

0 200 400 600 800 1000
Iteration (x20)

0

1

2

3

4

5

Lo
ss

Full Loss: L(p,y)

KL-rule
Max-rule

0 200 400 600 800 1000
Iteration (x20)

0

1

2

3

4

5

Lo
ss

Selected Partial Loss: L(p*,y)

KL-rule
Max-rule

Fig. 4. The training losses for the temporal stream of PBNet-6-3 on the
UCF101 dataset (split 1).

0 50 100 150 200 250
Iteration (x20)

0

1

2

3

4

5

Lo
ss

Full Loss: L(p,y)

KL-rule
Max-rule

0 50 100 150 200 250
Iteration (x20)

0

1

2

3

4

5

Lo
ss

Selected Partial Loss: L(p*,y)

KL-rule
Max-rule

Fig. 5. The training losses for the spatial stream of PBNet-6-3 on the UCF101
dataset (split 1).

TABLE I
THE CLASSIFICATION ACCURACY OBTAINED BY TWO SELECTION RULES

ON THE UCF101 DATASET (SPLIT 1).

Modality Max-rule KL-rule
Flow 88.1% 87.5%
RGB 85.3% 86.0%

TABLE II
THE CLASSIFICATION ACCURACY OBTAINED BY DIFFERENT FUSION

SCHEMES ON UCF101 (SPLIT 1).

Fusion RGB + Max-rule RGB + KL-rule
Flow + Max-rule 93.7% 94.4%
Flow + KL-rule 93.5% 93.7%

C. Illustration on the KL-rule

Here, we provide more experimental results to illustrate the
benefits of the proposed KL-rule (§ 3.2.2). For this purpose, we
conducted two additional experiments on the UCF and HMDB

TOWARDS EFFICIENT ACTION RECOGNITION: PRINCIPAL BACKPROPAGATION FOR TRAINING TWO-STREAM NETWORKS 7

RGB
Images

Selected
Images

1 2 3 4 5 6 7 8 9 10 11 12

3 5 7

(a) UCF

RGB
Images

Selected
Images

1 2 3 4 5 6 7 8 9 10 11 12

1 2 7

(b) HMDB

Fig. 6. Illustration on the testing example from the (a) UCF and (b) HMDB datasets. We sampled 12 RGB images from the testing video with equal stride
and then computed the KL divergences between the class likelihoods (Eq.(3)) of each sampled image and those of the whole set. To evaluate the importance
of the training by PBNets, we report the results by using the net before training and the one after training. We also report the 3 selected images whose pooled
feature has a minimal KL distance to the global distribution among all possible selections out of 12 sampled images.

datasets, respectively. Particularly, we sampled 12 images with
equal stride given a testing video and then computed the KL
divergences between the class likelihoods (Eq. (3)) of the
CNN features for each image and those for the whole set.
To illustrate the importance of the training by our methods,
we report the results by using the net before training and the
one after training (we applied PBNet-6-3 for the training).

Figure 6 and Figure 8 display the results on UCF and
HMDB, respectively. It is observed that the initial nets gen-
erate large KL distances which in turn demonstrates the
incorrect relevancy between each image and the global video.
After training, the KL values decrease significantly. More
importantly, the networks are able to detect the outliers which
have a relatively larger KL values (i.e., the 1-st image in
Figure 6 and the 12-th image in Figure 8). We also report the 3
selected images with minimum KL distance after pooling (note
that they are not necessarily corresponded to the 3 minimal KL
values). It is interesting to see that the selected images reflect
the different stages of the action and hence summarizing the
entire story.

D. Evaluation on Multi-Temporal-Length Networks

In § III, we explore the method to process multi-temporal-
length snippets for the temporal net. To evaluate the improve-
ment by this extension, we contrast the performance of the
PBNets operating on the multi-length inputs (i.e., 5-length
and 10-length snippets) to the networks operating only on
single-length inputs. Table III summarizes the classification
accuracies by PBNet-6-3 on the first split of the UCF101
dataset. It is shown that considering multi-temporal-length
inputs is able to slightly boost the classification performance.

TABLE III
EVALUATIONS OF THE MULTI-TEMPORAL-LENGTH INPUTS ON THE

UCF101 DATASET (SPLIT 1).

Method 5-length 10-length Multi-length
PBNet-6-3 87.8% 87.5%% 88.1%

m=1 m=2 m=4 m=8
0

5

10

15

20

25

T
im

e
P

er
 It

er
 (

S
ec

on
ds

) Training Time

Full-bp
PBNets

m=1 m=2 m=4 m=8
0

5

10

15

20

M
em

or
y

(G
B

)

Memory Cost

Full-bp
PBNets

Fig. 7. Efficiency comparisons between Full-m and PBNet-m-1 with m
varying from 1 to 8. For fair comparisons, the experiments are carried out on
one GPU. The iter size for SGD is set to be 8.

TABLE V
EFFICIENCY COMPARISONS BETWEEN FULL-m AND PBNET-6-3. FOR

FAIR COMPARISONS, THE EXPERIMENTS ARE CARRIED OUT ON ONE GPU.
THE ITER SIZE FOR SGD IS SET TO BE 8.

Modality Full-3 Full-4 Full-6 PBNet-6-3

TimePerIter 10.37s 12.12s 13.88s 11.30s

Memory 7.63GB 9.66GB 13.86GB 8.14GB

E. Comparisons with Full-bp Models

In this experiment, we contrast the proposed PBNets against
the full-bp models. We increase the number of the sampled

TOWARDS EFFICIENT ACTION RECOGNITION: PRINCIPAL BACKPROPAGATION FOR TRAINING TWO-STREAM NETWORKS 8

TABLE IV
CLASSIFICATION PERFORMANCE COMPARISON BETWEEN PBNETS AND FULL-BP MODELS ON THE UCF101 DATASET (SPLIT 1).

Modality Full-1 Full-2 Full-3 Full-4 Full-5 Full-6 PBNet-6-3 PBNet-8-4

Flow 85.3% 86.9% 87.4% 87.5% 87.5% 87.4% 88.1% 88.5%

RGB 85.0% 85.2% 85.4% 85.2% 85.5% 85.5% 86.0% 86.2%

snippets (i.e., m) from 1 to 6 in full-bp models, and report
the classification accuracies on the first split of the UCF101
dataset for both streams in Table IV. We first note that
employing more snippets can almost increase the performance,
although the improvement becomes small when m > 3.

In addition to the full-bp models, we also summarize the
results of PBNet-6-3 and PBNet-8-4 in Table IV. PBNet-6-
3 and PBNet-8-4 outperform Full-3 and Full-4, respectively,
implying that involving longer temporal information into the
training of PBNets can promote the accuracies consistently.
Our model PBNet-6-3 even achieves better accuracies than
the Full-6 model. By selecting the principal snippets, our
PBNet-6-3 not only reduces the back-propagation time but also
removes the snippets that are not so related to the task (e.g.
the background items), which potentially enables our model to
outperform the Full-6 model. Overall, PBNet-8-4 outperforms
all full-bp models. As presented in § III-B2, the model Full-3
is equivalent to the case where 3 principal snippets are selected
by random. Our PBNet-6-3 outperforms Full-3 thus verifying
the benefit of the proposed selection rules to the naive random
selection method.

We compare the training times of full-bp models and
PBNets in Figure 7. For this experiment, we increased the
value of m from 1 to 8 for full-bp models and PBNets, and
fix the number of selected snippets to 1 for PBNets. For fair
comparisons, we set all the caffe parameters (e.g., iter size)
similarly in all models, and carried out the experiments on one
GPU. Figure 7 shows that PBNet-1-1 is slightly slower than
Full-1, even though PBNet-1-1 is actually equivalent to Full-
1. This is because in our implementation, PBNet-1-1 needs
an additional forward pass in the forward-backward stage.
Increasing m incurs more computations for full-bp models;
while for PBNets, the selected backpropagation scheme re-
markably reduces the running times (even for a large m).

We also plot the memory footprints in Figure 7. The full-
bp models require more memory when the value of m is
increased. On the contrary, our PBNets almost have the same
memory footprint even when m is large. As such, training
with limited memory is possible with our model.

In addition, we compare the training time and memory cost
of PBNet-6-3 with the Full-bp models in Table V. Clearly, our
PBNet-6-3 costs slightly more time and memory than Full-3,
but is more efficient than other Full-bps (especially for Full-6).

F. Comparisons with The State-of-The-Arts

We compare the classification accuracy of PBNets with the
state-of-the-art approaches over all three splits of the UCF101
and the HMDB51 dataset in Table VI. The improvements
achieved by PBNets are quite substantial, at least being 6.5%

on the UCF101 and 9.5% on the HMDB51 compared to
the original two-stream method [3]. Such significant gains
are achieved as a result of employing better models (i.e.,
BN-Inception net) and also considering long-range temporal
patterns. Our solution comfortably outperforms the Spatial-
Temporal-Residue-Network (ST-ResNet) which benefits from
a very deep network (i.e., 50-layer ResNet) along cross-stream
residual connections [5]. This clearly demonstrates the impor-
tance of our proposal in training two-stream models. The TSN
model [7] also benefits from long-range temporal structure
(using temporal pooling) and BN-Inception net. Nevertheless,
extending TSN to work with longer temporal information
seems to be difficult due to its high computation load and
memory requirements. Furthermore, we note that our solution
is superior to TSN on both datasets.

As shown in [29], [30], [31], [5], combining CNN mod-
els with trajectory-based hand-crafted IDT features [32] can
improve the final performances. Hence, we performed a late
fusion of hand-crafted IDT features with our approach. For
this purpose, we averaged the L2-normalized SVM scores of
FV-encoded IDT features (i.e., HOG, HOF and MBH) with
the L2-normalized video predictions (before the loss layer) of
our PBNets. Table VI summarizes the results and indicates that
there is still room for improvement. Overall, our 95.4% on the
UCF101 and 72.5% on the HMDB51 are superior than other
counterparts on these two action recognition benchmarks.

TABLE VI
MEAN CLASSIFICATION ACCURACY OF THE STATE-OF-THE-ARTS ON

HMDB51 AND UCF101.

Method UCF101 HMDB51
Two-Stream Model [3] 88.0% 59.4%
Two-Stream+LSTM [4] 88.6% -

Two-Stream (VGG16) [33] 91.4% 58.5%
Two-Stream Fusion [6] 92.5% 65.4%

KVMF [18] 93.1% 63.3%
TSN [7] 94.0% 68.5%

ST-ResNet [5] 93.4% 66.4%
TDD + IDT [29] 91.5% 65.9%

Dynamic Image Networks + IDT [31] 89.1% 65.2%
Two-Stream Fusion + IDT [6] 93.5% 69.2%

ST-ResNet + IDT [5] 94.6% 70.3%
Full-6 93.7% 68.7%

Full-6 + IDT 94.6% 70.8%
PBNet-6-3 94.5% 68.9%
PBNet-8-4 94.9% 69.3%

PBNet-6-3 + IDT 95.2% 72.2%
PBNet-8-4 + IDT 95.4% 72.5%

G. Evaluations on Untrimmed Videos
To further evaluate the effectiveness of our method, we

also conduct experiments of untrimmed videos on the THU-
MOS14 [34]. This dataset contains four subsets: training set,

TOWARDS EFFICIENT ACTION RECOGNITION: PRINCIPAL BACKPROPAGATION FOR TRAINING TWO-STREAM NETWORKS 9

validation set, testing set and background set. We use the
training set (i.e. all videos in UCF101) and the validation
set for training, and the testing set containing 1575 videos
for testing. The training settings are the same as that of
UCF101 excluding that we enlarge the numbers of the training
iterations to be 25000 and 8000 for the temporal and spatial
streams, respectively. Besides during training, we regard the
same video with the principal and secondary labels as two
different videos: one with the principal label and the other with
the secondary label. We only apply the single temporal-length
input (i.e. 5-length) for the flow stream. For the testing, we
uniformly divide each video into 100 segments, and extract
the center and four corners from each segment followed by
horizontal flipping. We first obtain total 1000 snippets for each
testing video, then average the output scores of them, and
finally compute the Mean Average Precision (mAP) by the
THUMOS toolkit. We report the MAPs of Full-3 and PBNet-
6-3 in Table VII. Obviously, our PBNet-6-3 outperforms Full-3
remarkably on the untrimmed videos.

TABLE VII
THE CLASSIFICATION ACCURACIES ON THUMOS14.

Methods RGB Flow Two-stream
Full-3 64.14% 63.07% 72.7%

PBNet-6-3 69.09% 64.34% 76.5%

VI. CONCLUSION

We proposed the Principal Backpropagation Networks (PB-
Nets) to efficiently train the two-stream network models for
video action recognition with long-range temporal awareness.
Specifically, our approach performs the forward computation
for all sampled snippets to obtain the global temporal depen-
dencies, but only backpropagates a small number of snippets
selected by two new strategies, namely the Max-rule and
the KL-rule. We showed that with these two rules, one can
minimize the pooling loss over all the snippets. In our experi-
ments, we demonstrated that the proposed PBNet achieves the
state-of-the-art performance on two popular action recognition
datasets.

REFERENCES

[1] R. Poppe, “A survey on vision-based human action recognition,” Image
and Vision Computing (IVC), vol. 28, no. 6, pp. 976–990, 2010.

[2] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 221–231, Jan 2013.

[3] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in Proc. Advances in Neural Information
Processing Systems (NIPS), 2014, pp. 568–576.

[4] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,
and G. Toderici, “Beyond short snippets: Deep networks for video
classification,” in Proc. Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 4694–4702.

[5] C. Feichtenhofer, A. Pinz, and R. Wildes, “Spatiotemporal residual
networks for video action recognition,” in Proc. Advances in Neural
Information Processing Systems (NIPS), 2016, pp. 3468–3476.

[6] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” in Proc. Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1933–
1941.

[7] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: towards good practices for deep action
recognition,” in Proc. European Conference on Computer Vision (EC-
CV). Springer, 2016, pp. 20–36.

[8] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proc. Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2014, pp. 1725–1732.

[9] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proc. Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 2625–
2634.

[10] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402,
2012.

[11] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb:
a large video database for human motion recognition,” in Proc. Int.
Conference on Computer Vision (ICCV). IEEE, 2011, pp. 2556–2563.

[12] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in Proc. Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2008, pp. 1–8.

[13] Y.-G. Jiang, Q. Dai, W. Liu, X. Xue, and C.-W. Ngo, “Human action
recognition in unconstrained videos by explicit motion modeling,” IEEE
Transactions on Image Processing, vol. 24, no. 11, pp. 3781–3795, 2015.

[14] Y.-G. Jiang, Q. Dai, X. Xue, W. Liu, and C.-W. Ngo, “Trajectory-based
modeling of human actions with motion reference points,” in European
Conference on Computer Vision. Springer, 2012, pp. 425–438.

[15] J. Liu, C. Chen, Y. Zhu, W. Liu, and D. N. Metaxas, “Video classification
via weakly supervised sequence modeling,” Computer Vision and Image
Understanding, vol. 152, pp. 79–87, 2016.

[16] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Dense trajectories
and motion boundary descriptors for action recognition,” Int. Journal
of Computer Vision (IJCV), vol. 103, no. 1, pp. 60–79, 2013.

[17] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action
recognition: A survey,” Image and Vision Computing (IVC), pp. –, 2017.

[18] W. Zhu, J. Hu, G. Sun, X. Cao, and Y. Qiao, “A key volume mining deep
framework for action recognition,” in Proc. Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2016, pp. 1991–1999.

[19] C. Feichtenhofer, A. Pinz, and R. Wildes, “Spatiotemporal multiplier
networks for video action recognition,” in Proc. Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 7445–7454.

[20] W. Yunbo, L. Mingsheng, W. Jianmin, and P. S. Yu, “Spatiotemporal
pyramid network for video action recognition,” in Proc. Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[21] L. Fan, W. Huang, C. Gan, S. Ermon, B. Gong, and J. Huang, “End-
to-end learning of motion representation for video understanding,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 6016–6025.

[22] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object
detectors with online hard example mining,” in Proc. Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 761–769.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int.
Conference on Machine Learning (ICML), 2015, pp. 448–456.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2009, pp.
248–255.

[26] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao, “Towards good practices
for very deep two-stream convnets,” arXiv preprint arXiv:1507.02159,
2015.

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in ACM international conference on Multimedia
(ACM MM). ACM, 2014, pp. 675–678.

[28] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” in Proc.
European Conference on Computer Vision (ECCV). Springer, 2004,
pp. 25–36.

[29] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-
pooled deep-convolutional descriptors,” in Proc. Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015, pp. 4305–4314.

TOWARDS EFFICIENT ACTION RECOGNITION: PRINCIPAL BACKPROPAGATION FOR TRAINING TWO-STREAM NETWORKS 10

[30] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Proc. Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2015, pp.
4489–4497.

[31] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould, “Dynamic
image networks for action recognition,” in Proc. Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016, pp. 3034–3042.

[32] H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” in Proc. Conference on Computer Vision and Pattern Recognition
(CVPR), 2013, pp. 3551–3558.

[33] N. Ballas, L. Yao, C. Pal, and A. Courville, “Delving deeper into con-
volutional networks for learning video representations,” arXiv preprint
arXiv:1511.06432, 2015.

[34] Y. Jiang, J. Liu, A. R. Zamir, G. Toderici, I. Laptev, M. Shah, and
R. Sukthankar, “Thumos challenge: Action recognition with a large
number of classes,” 2014.

APPENDIX A
PROOFS

In the paper, we first introduce Theorem 1 and then present
Theorem 2. Actually, the proof of Theorem 1 is based on the
result of Theorem 2. Therefore, in this supplementary material,
we switch the order of presentation to facilitate readability. Let
{F1,F2, · · · ,Fg} be a partition of F = {f1,f2, · · · ,fm},
i.e., F =

⋃g
i=1 Fi and Fi

⋂
Fj = ∅, for i 6= j. We denote

the elements of Fj by {f qj,1 ,f qj,2 , · · · ,f qj,n}. We note that
the partitions (i.e., Fj) are equal-size (this can be easily
achieved by sampling enough snippets in practise). Let z and
zj denote the pooling results of F and its j-th partition (i.e.,
Fj), respectively; p and pj are the associated softmax outputs.

Theorem 2. The full and partial losses are related as

L(p, y) = L(pj , y)−DKL(p‖pj)− Ep(zj − z), (10)

where DKL(·, ·) computes the Kullback-Leibler (KL) diver-
gence, Ep(·) is the expected value over the distribution p,
z = z− z(y) and zj = zj − z

(y)
j with z(y) and z

(y)
j being the

elements of the y-th class in z and zj , respectively.

Proof. The softmax losses of L(z, y) and L(zj , y) take the
form as

L(p, y) = log(

C∑
c=1

exp(z(c)))− z(y), (11)

L(pj , y) = log(

C∑
c=1

exp(z
(c)
j))− z

(y)
j , (12)

where z(c) and z
(c)
j denote the c-th columns of z and zj ,

respectively; C is the number of the classes. Then, the loss
difference is computed by

Ldiff = L(pj , y)− L(p, y),

= log(

∑C
c=1 exp(z

(c)
j)∑C

c=1 exp(z
(c))

)− (z
(y)
j − z(y)). (13)

As for the KL-divergence DKL(p‖pj), we have

DKL(p‖pj)

=

C∑
c=1

p(c) log
(p(c)
p
(c)
j

)
,

=

C∑
c=1

p(c) log(

∑C
k=1 exp(z

(k)
j)∑C

k=1 exp(z
(k))
· exp(z

(c))

exp(z
(c)
j)

),

=

C∑
c=1

p(c) log(

∑C
k=1 exp(z

(k)
j)∑C

k=1 exp(z
(k))

) +

C∑
c=1

p(c)(z(c) − z
(c)
j),

= log(

∑C
k=1 exp(z

(k)
j)∑C

k=1 exp(z
(k))

) +

C∑
c=1

p(c)(z(c) − z
(c)
j), (14)

where p(c) and p
(c)
j denote the c-th columns of p and pj ,

respectively. By comparing the difference between Eq. (13)
and Eq. (14), we arrive at

Ldiff −DKL(p‖pj)

=

C∑
c=1

p(c)((z
(c)
j − z

(y)
j)− (z(c) − z(y)),

= Ep(zj − z), (15)

thus concluding the proof.

Theorem 1. If the snippets are pooled using average pooling
(Eq. (2)), then we have

L(p, y) ≤ 1

g

g∑
j

L(pj , y) ≤ max
1≤j≤g

L(pj , y), (16)

where L(·, ·) is given by Eq.(4).

Proof. We only need to prove the left inequality as the right
inequality follows directly from it. According to Theorem 2,
we have

L(p, y)

=
1

g

g∑
j=1

L(p, y),

=
1

g

g∑
j

L(pj , y)−DKL(p‖pj)− Ep(zj − z),

=
1

g

g∑
j

(L(pj , y)−DKL(p‖pj))−
1

g

g∑
j

Ep(zj − z),

=
1

g

g∑
j

(L(pj , y)−DKL(p‖pj))− Ep(
1

g

g∑
j

zj − z),

=
1

g

g∑
j

L(pj , y)−
1

g

g∑
j

DKL(p‖pj). (17)

In Eq. (17), we apply the average pooling, indicating that

z =
1

m

m∑
i=1

f i =
1

g

g∑
j=1

1

n

n∑
i=1

f qj,i =
1

g

g∑
j=1

zj .

TOWARDS EFFICIENT ACTION RECOGNITION: PRINCIPAL BACKPROPAGATION FOR TRAINING TWO-STREAM NETWORKS 11

Therefore, we have the equation 1
g

∑g
j Ep(zj − z) =

Ep(
1
g

∑g
j zj − z) = 0. Since DKL(p‖pj) ≥ 0 for any case,

we arrive that L(p, y) ≤ 1
g

∑g
j L(pj , y).

For other pooling operations such as the weight and max
pooling, we have the following two corollaries.

Corollary 1. If the pooling function in Eq. (2) employs
the weight pooling, i.e., z =

∑m
i=1 wif i, and zj =

g
∑n

i=1 wqj,if qj,i , for j = 1, · · · , g, then we have the same
conclusion as Theorem 1, namely,

L(p, y) ≤ 1

g

g∑
j

L(pj , y) ≤ max
1≤j≤g

L(pj , y), (18)

Proof. With the weight pooling, we still have 1
g

∑g
j Ep(zj −

z) = 0, thus the proof of Theorem 1 is still applicable.

Corollary 2. If the snippets are pooled using max pooling
(Eq. (2)), then we have

L(p, y) ≤ max
1≤j≤g

L(pj , y) + min
1≤j≤g

Ep(z − zj), (19)

Proof. The definition of max pooling gives that z =
max{f1,f2, · · · ,fm} = max{z1, z2, · · · , zn}. Then,

L(p, y)

= L(pj , y)−DKL(p‖pj) + (z
(y)
j − z(y))

+

C∑
c=1

p(c)(z(c) − z
(c)
j),

≤ L(pj , y)−DKL(p‖pj) +

C∑
c=1

p(c)(z(c) − z
(c)
j),

≤ L(pj , y) +

C∑
c=1

p(c)(z(c) − z
(c)
j), (1 ≤ j ≤ n)(20)

(21)

Thus,

L(p, y)

≤ min
1≤j≤n

{L(pj , y) +

C∑
c=1

p(c)(z(c) − z
(c)
j)}, (22)

≤ max
1≤j≤g

L(pj , y) + min
1≤j≤n

C∑
c=1

p(c)(z(c) − z
(c)
j). (23)

Note that when the algorithm converges, the term
min1≤j≤g Ep(z−zj) becomes close to zero, thereby we will
still have L(p, y) ≤ max1≤j≤g L(pj , y) in the end.

APPENDIX B
MORE ILLUSTRATIONS ON THE KL-RULE

In the main text, we have illustrated the effectiveness of KL-
rule in Figure 6 and 6. Here, we provide more experimental
results to illustrate its benefits in Figure.

TOWARDS EFFICIENT ACTION RECOGNITION: PRINCIPAL BACKPROPAGATION FOR TRAINING TWO-STREAM NETWORKS 12

Fig. 8. Illustration on the testing example from the HMDB dataset. The experimental settings are the same as Figure 6. Each column displays one input
video where the frames denoted by red box are the selected frames.
View publication statsView publication stats

https://www.researchgate.net/publication/328510458

	Introduction
	Related Work
	Our Approach
	Temporal Pooling Strategy
	Principal Backpropagation Networks
	Max-Rule
	KL-Rule
	Selection from sampled partitions
	Multi-Temporal-Length Snippets

	Practical Considerations
	Training the Network
	Testing Scheme

	Evaluations
	Datasets and Implementation Details
	Which Selection Rule?
	Illustration on the KL-rule
	Evaluation on Multi-Temporal-Length Networks
	Comparisons with Full-bp Models
	Comparisons with The State-of-The-Arts
	Evaluations on Untrimmed Videos

	Conclusion
	References
	Appendix A: Proofs
	Appendix B: More Illustrations on the KL-rule

