I completed my PhD in Computer Science at MIT EECS,
where I also got my master's degree.
Before that I obtained my bachelor’s degree in Computer Science from Tsinghua University.
I train large scale autoregressive models that generate multimodal outputs. I am the tech lead / core contributor to Fluid, UniFluid, and Gemini Multimodal Generation.
Email: lijiefan[at]alum.mit.edu
Publications
*: equal contribution
Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities
Google Gemini Team Tech ReportPaper
Unified Autoregressive Visual Generation and Understanding with Continuous Tokens Lijie Fan*, Luming Tang*, Siyang Qin*, Tianhong Li, Xuan Yang, Siyuan Qiao, Andreas Steiner, Chen Sun, Yuanzhen Li, Tao Zhu, Michael Rubinstein, Michalis Raptis, Deqing Sun, Radu Soricut PreprintPDF
/ arXiv
Fractal Generative Models
Tianhong Li, Qinyi Sun Lijie Fan,
Kaiming He PreprintPDF
/ arXiv / code
Learning Vision from Models Rivals Learning Vision from Data
Yonglong Tian*, Lijie Fan*,
Kaifeng Chen, Dina Katabi, Dilip Krishnan, Phillip Isola CVPR 2024PDF
/ arXiv / code
Scaling Laws of Synthetic Images for Model Training ... for
Now Lijie Fan*,
Kaifeng Chen, Dilip Krishnan, Dina Katabi, Phillip Isola, Yonglong Tian* CVPR 2024PDF
/ arXiv / code
Improving CLIP Training with Language Rewrites Lijie Fan*, Dilip Krishnan, Phillip Isola, Dina Katabi,
Yonglong Tian*
NeurIPS 2023PDF
/ arXiv / code
StableRep: Synthetic Images from Text-to-Image Models Make Strong
Visual Representation Learners
Yonglong Tian*, Lijie Fan*,
Phillip Isola, Huiwen Chang, Dilip Krishnan NeurIPS 2023PDF
/ arXiv / code /
MIT
News
Reparo: Loss-Resilient Generative Codec for Video
Conferencing
Tianhong Li, Vibhaalakshmi Sivaraman, Lijie Fan,
Mohammad Alizadeh, Dina Katabi PreprintPDF
/ arXiv
Visual Dependency Transformers: Dependency Tree Emerges from
Reversed Attention
Mingyu Ding, Yikang Shen, Lijie Fan, Zhenfang Chen,
Zitian Chen, Ping Luo, Joshua B Tenenbaum, Chuang Gan CVPR 2023PDF
/ arXiv / code
Making Contrastive Learning Robust to Shortcuts
Tianhong Li*, Lijie Fan*, Yuan Yuan, Hao He, Yonglong
Tian, Rogerio Feris, Piotr Indyk, Dina Katabi WACV 2023PDF
/ arXiv / Talk (by Dina)
Targeted supervised contrastive learning for long-tailed
recognition
Tianhong Li*, Peng Cao*, Yuan Yuan, Lijie Fan, Yuzhe
Yang, Rogerio Feris, Piotr Indyk, Dina Katabi CVPR 2022PDF
/ arXiv / code
Unsupervised Learning for Human Sensing Using Radio
Signals
Tianhong Li*, Lijie Fan*, Yuan Yuan*, Dina Katabi WACV 2022PDF
/ arXiv
When Does Contrastive Learning Preserve Adversarial Robustness from
Pretraining to Finetuning? Lijie Fan, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, Chuang
Gan NeurIPS 2021Project
Page / PDF / arXiv
/ Code
/ TechTalks
Real-time Through-wall Human Activity Recognition using Radio
Signals ECCV 2020 Demo Project Page / Video
Controllable Image-to-Video Translation: A Case Study on Facial
Expression Generation Lijie Fan, Wenbing Huang, Chuang Gan, Junzhou Huang,
Boqing Gong AAAI 2019Project Page/ PDF /
arXiv Oral Presentation
End-to-End Learning of Motion Representation for Video
Understanding Lijie Fan*, Wenbing Huang*, Chuang Gan, Stefano
Ermon, Boqing Gong, Junzhou Huang CVPR 2018Project Page/
PDF / arXiv
/ Code / Talk Spotlight Presentation
Towards Efficient Action Recognition: Principal Backpropagation for
Training Two-Stream Networks Wenbing Huang*, Lijie Fan* ,Mehrtash Harandi, Lin
Ma, Huaping Liu, Wei Liu, Chuang Gan IEEE Transactions on Image Processing (T-IP)
2019 PDF
Adversarial Localization Network Lijie Fan, Shengjia Zhao, Stefano Ermon
NIPS 2017 Workshop on Learning
with Limited Labeled Data PDF
Efficient Optimization for Linear Dynamical Systems with
Applications to Clustering and Sparse Coding Wenbing Huang, Mehrtash Harandi, Tong Zhang, Lijie
Fan, Fuchun Sun, Junzhou Huang
NIPS 2017 PDF / Code